Normalized least mean square-based adaptive sparse filtering algorithms for estimating multiple-input multiple-output channels

نویسندگان

  • Guan Gui
  • Li Xu
  • Fumiyuki Adachi
چکیده

This paper studies normalized least mean square-based adaptive sparse filtering algorithms for estimating multiple-input multiple-output (MIMO) channels. Although the MIMO channel is often modeled as sparse, traditional normalized least mean square-based filtering algorithm never takes the advantage of the inherent sparse structure information and thus causes some performance loss. Unlike the traditional method, the proposed two adaptive sparse channel estimation methods exploit the sparse structure information of MIMO channels. To validate the effectiveness of proposed MIMO channel estimates, theoretical analysis and simulation results are provided. We derive steady-state mean-square deviations of the proposed MIMO channel estimates and theoretically show that it is better than the traditional one. Moreover, their performance advantages are confirmed by computer simulations. Copyright © 2014 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable is Better Than Invariable: Stable Sparse VSS-NLMS Algorithms with Application to Estimating MIMO Channels

To estimate multiple-input multiple-output (MIMO) channels, invariable step-size normalized least mean square (ISSNLMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model due to broadband signal transmission, such sparsity can be exploited by adaptive sparse channel estimation (ASCE) methods using sparse ISS-NLMS algorit...

متن کامل

Comparative Study of Adaptive Filter Algorithm of a QO-STBC Encoded MIMO CDMA System

This paper represents a comparative Study of filter algorithms Least Mean Square (LMS), Normalized Least Mean Square (NLMS) and Recursive Least Square (RLS) by considering a Quasi Orthogonal Space Time Block Code (QOSTBC) encoded Multiple Input Multiple output (MIMO) Code Division Multiple Access (CDMA) system. MIMO-CDMA system has been currently acknowledged as one of the most competitive tech...

متن کامل

Stable adaptive sparse filtering algorithms for estimating multiple-input-multiple-output channels

Channel estimation problem is one of the key technical issues for broadband multiple-input–multiple-output (MIMO) signal transmission. To estimate the MIMO channel, a standard least mean square (LMS) algorithm was often applied to adaptive channel estimation because of its low complexity and stability. The sparsity of the broadband MIMO channel can be exploited to further improve the estimation...

متن کامل

Microsoft Word - Gui_ICCS2014.docx

To estimate multiple-input multiple-output (MIMO) channels, invariable step-size normalized least mean square (ISSNLMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model due to broadband signal transmission, such sparsity can be exploited by adaptive sparse channel estimation (ASCE) methods using sparse ISS-NLMS algorit...

متن کامل

Adaptive Sparse Channel Estimation Methods for Time-Variant MIMO Communication Systems

Channel estimation problem is one of key technical issues in time-variant multiple-input multiple-output (MIMO) communication systems. To estimate the MIMO channel, least mean square (LMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model, such sparsity could be exploited and then estimation performance could be improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Wireless Communications and Mobile Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015